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Abstract
Copy number alterations (CNAs) are an important type of genomic aberrations. It plays an
important role in tumor pathogenesis and progression of cancer. It is important to detect regions
of the cancer genome where copy number changes occur, which may provide clues that drive
cancer progression. Deep sequencing technology provides genomic data at single-nucleotide
resolution and is considered a better technique for detecting CNAs. There are currently many
CNA-detection algorithms developed for whole genome sequencing (WGS) data. However, their
detection capabilities have not been systematically investigated. Therefore, we selected three
algorithms: Accucopy, Sequenza, and ControlFreeC, and applied them to data simulated under
different settings. The results indicate that: 1) the correct inference of tumor sample purity is
crucial to the inference of CNAs. If the tumor purity is wrongly inferred, the CNA detection will
fail. 2) Higher sequencing depth and abundance of CNAs can improve performance. 3) Under the
settings tested (sequencing depth at 5X or 30X, purity from 0.1 to 0.9, existence of subclones or
not), Accucopy is the best-performing algorithm overall. For coverage=5X samples, ControlFreeC
requires tumor purity to be above 50% to perform well. Sequenza can only perform well in
high-coverage and more-CNA samples.

Keywords: CNA/copy number alteration; CNV/copy number variant; algorithm comparison;
WGS/whole genome sequencing; cancer; tumor

1 Introduction

1.1 What is Copy Number Alteration (cf. Copy Number Variant)?



Copy number alterations (CNAs) arise from deletions, insertions, or duplications resulting in
chromosomal aberrations and aneuploidy, which are common genomic aberrations in cancer 1. It
is notable that genomes of normal cells also exhibit variable copy numbers called germline copy
number variants (CNVs) 2. In large studies of CNAs in cancer patients, it becomes necessary to
accurately identify and separate CNAs and CNVs so as to prioritize candidate tumor suppressors
and oncogenes 2. One of the best ways to separate CNAs and CNVs is to do tumor-normal pair
sequencing and use the matched normal as the control to detect CNAs only. CNAs are often
associated with specific cancer cell types 3, tumor aggressiveness, and patient prognosis 4,5.
Cancer-related genes can be identified by detecting copy number alterations of tumor samples 6 ,
and become targets of new treatments 7–9. Therefore, it is important to identify the loci and the
copy number state of CNAs.

1.2 Technologies for Copy Number Alteration Detection

Over the years, there are many technologies developed to detect copy number
alterations/variants in the genome. For example, comparative genomic hybridization (CGH) 10

generates an overview of chromosomal gains and losses throughout the whole genome of a
tumor. In CGH, tumor DNA is labelled with a green fluorochrome, which is subsequently mixed
(1:1) with red labelled normal DNA and hybridized to normal human metaphase preparations.
The green and red labelled DNA fragments compete for hybridisation to their locus of origin on
the chromosomes. The green to red fluorescence ratio measured along the chromosomal axis
represents loss or gain of genetic material in the tumor at that specific locus. CGH technology
has the advantages of using a small amount of DNA samples, only one hybridization is needed to
detect genomic copy number changes, and it can be used to study both living cells, tissues, or
archived tissues. However, the resolution of CGH is limited to alterations of approximately
5-10Mb. Smaller CNAs will evade its detection. The second technology is microarray-based
comparative genomic hybridization (array CGH, aCGH) 11. Instead of using metaphase
chromosomes, aCGH uses slides (known as microarray) arrayed with small segments of DNA
(known as probes) as the targets for analysis. The tumor DNA is then labeled with a fluorescent
dye of a specific color, while the normal DNA is labeled with a dye of a different color. The two
genomic DNAs, tumor and normal, are then mixed together and applied to a microarray.
Compared with CGH technology, it has two advantages. 1) Higher resolution and sensitivity.
Because probes are orders of magnitude smaller than metaphase chromosomes, the theoretical
resolution of aCGH is proportionally higher than that of traditional CGH. 2) Automation and
programming. The aCGH technology adopts a microarray chip detection process, which can be
automated by machines and computers, which is both time-saving and labor-saving. 3) Single
nucleotide polymorphism(SNP) arrays 12. It detects gains and loss of genomic segments by
detecting loss of heterozygosity (LOH). 4) Deep sequencing technology 13. Using deep
sequencing technologies to detect copy number alterations is a relatively new field that has
developed rapidly in recent years. Notably, higher sequencing depth can improve the accuracy
and resolution of CNAs. More accurate breakpoints of copy number alterations can be obtained,
and more forms of genomic alterations such as insertions and inversions that cannot be
detected by chip-based methods can also be detected. Since deep sequencing technology does
not require probes and can detect copy number alterations at single-base resolutions, it
significantly increases the number of copy number alterations detected.
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1.3 CNA-detection algorithms based on deep sequencing

With the development of sequencing technology and the reduction of sequencing cost,
compared with other microarray-based technologies, deep sequencing provides higher precision
and higher throughput for the analysis of copy number alteration 13. Many algorithms have been
developed for the detection of copy number alteration. These algorithms can be divided into
three categories based on the data used by the algorithms. The first category is to only use the
depth information of the segment, such as CNAnorm, THetA, etc. 14,15. The second type is to only
use single nucleotide variant information, such as PurityEst and PurBayes 16,17. The third category
is to use both segment depth and single nucleotide variant information, such as PyLOH and
patchwork 18,19. Identifiability problems exist for the first and second types of methods, since
different combinations of tumor sample purity and cancer cell ploidy estimates may yield
identical observations. For example, if the tumor purity estimate is 0.4 and the cancer cell ploidy
estimate is 4, or if the tumor purity is 0.8 and the cancer cell ploidy is 3, both can result in the
tumor sample ploidy to be 2.8 (hence identical tumor sequencing coverage data). Likewise, using
only single-nucleotide variant information results in a similar identifiability problem. Therefore,
these algorithms use explicit or implicit assumptions in order to solve the identifiability problem.
For example, PurityEst, an algorithm that uses B-allele frequencies (BAFs), contains the
unreasonable assumption that the BAFs value should always be close to 0.5. Therefore, the third
type of methods, which simultaneously uses segment depth information and single nucleotide
variant information, can better solve the identifiability problem. According to the results
generated by the algorithm, the algorithm can be further divided into three subcategories. The
first subcategory is to only estimate the total copy number of any segment. The second
subcategory estimates both total copy number and the allele-specific copy number of any
segment. Compared to the first subcategory, the second subcategory is able to infer the
genotype. For example, if the total copy number of a gene is 3, and its candidate genotypes
include AAA, AAB, ABB, and BBB, the first subcategory can only infer the copy number of the
gene, while the second subcategory can also infer its genotype. A third subcategory has the
additional ability to estimate whether a certain segment is subclonal. Since there are subclones
in a tumor tissue due to tumor heterogeneity, the inference of subclonal segments is of great
significance. However, inferring the copy number state of subclonal segments is challenging.

Although there are many algorithms designed for deep sequencing data, the impact of the
sequencing depth, tumor purity, the extent of copy number alteration of cancer cells, and the
number of subclones on these algorithms has not been systematically studied. Therefore, in this
study, we compared three algorithms. We simulated whole-genome sequencing data under
different purities, different numbers of subclones, varying extent of copy number alterations, and
varying sequencing depths to evaluate these algorithms and find out their pros and cons.

2 Materials and methods

2.1 Algorithms selected
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We conducted a literature search (early 2019) and selected the following algorithms: Accucopy,
ControlFreeC, and Sequenza 20–22. ControlFreeC first estimates the copy number of a genomic
segment, then performs an estimation of the tumor sample purity, and then corrects the prior
copy number estimates to obtain the final copy number estimate of each segment. Both
Accucopy and Sequenza use the likelihood function to first estimate the tumor purity and
cancer-cell ploidy, and then derive the copy number of each segment. Unlike Sequenza, Accucopy
can also tell if a segment is subclonal, using the posterior probability to calculate the probability
that a segment is clonal. If the posterior probability is greater than 0.95, the segment is clonal
and its copy number is an integer. If it is lower than 0.95, the segment is subclonal and its copy
number is a floating-point number. The computing process of these software can be roughly
divided into four steps: 1. Data preprocessing; 2. Normalization; 3. Segmentation; 4. Estimating
copy number for each segment. The comparison of the three algorithms is shown in Table 1. We
ran all software with default parameters or ones recommended by the authors in their
corresponding papers.

Table 1

Feature comparison of Sequenza, ControlFreeC, and Accucopy

Sequenza Control Free C Accucopy (Accurity)

Preproces
sing

Extract the reads
and GC content of
each locus in
tumor and normal
samples. Identify
heterozygous loci
and extract B allele
frequencies.

Extract the reads
(reads) and GC
content of each
window in tumor and
normal samples.

Extract the reads (reads) and
GC content of each window in
tumor and normal samples.
Extract the number of reads of
HGSNV (heterozygous
germline
single-nucleotide-variant) loci.

Normaliza
tion

Sequencing depth
ratios are
normalized using
GC content.

The sequencing
depth is normalized
using the GC content.

Normalize depth
using the matched
normal sample.

Normalize depth
based on mappability.

Tumor sequencing depth is
normalized against the
matched normal sample to
derive the sequencing depth
ratio.

The sequencing depth ratio is
then normalized using GC
content and smoothed.

https://www.zotero.org/google-docs/?A1zngS


Segmenta
tion

Piecewise
Constant Fitting
algorithm.
Segmentation is
performed on the
read depth ratio
and B allele
frequency using
the copy number
package of R 23.

LASSO-based
algorithm 24.
Segmentation using
depth.

eGADA: a
Sparse-Bayesian-Learning
based segmentation
algorithm33. Using normalized
sequencing depth ratio as
input.

Copy
number
alteration
estimatio
n

A likelihood
estimation
function A is built
for copy number
and minor allele
frequency. The
likelihood function
B is established
for the purity and
cancer cell ploidy.
Use a grid search
algorithm to solve
for B and then for
A.

The normalized depth
is used to first
estimate the copy
number, and then the
tumor purity. The
depth is corrected.
Finally, perform
segmentation again
and estimate the
segment copy
number.

The likelihood function for
Tumor Read Enrichment (TRE,
like logR) and Normalized
Major Allele Fraction (NMAF,
like logOR) contains two
parameters, the tumor purity
and cancer-cell ploidy. Use BIC
to select the best fitting model,
and use grid search to solve it.
Infer the copy number of each
segment Based on the tumor
purity and cancer-cell ploidy
estimates.

2.2 Generation of simulation data

This study used EAGLE ( https://github.com/sequencing/EAGLE ) to simulate whole-genome
sequencing data. The hg19 reference human genome is used as the reference genome for
generating simulation data. EAGLE mainly uses the reference genome as a template. In addition,
the simulated samples used the SNPs with MAF (major allele frequency)>10% in the 1000
Genomes Project as the single nucleotide variant (SNV) data for all samples. In this study, EAGLE
is used to simulate the WGS data for both tumor and normal samples. When simulating a tumor
sample, the sequencing reads of cancer cells and normal cells in the tumor sample are simulated
in two steps. Copy number alterations and SNVs are introduced into the sequencing data of
cancer cells, but only SNVs are introduced into normal cells. EAGLE generates the sequencing
bam files for two types of cells respectively. The bam files were subsequently converted to fastq
files using SamToFastq of the PICARD package. The sequencing reads of cancer cells and
normal cells in the cancer tissue sample are then mixed according to a pre-set ratio to simulate a
tumor sample with a non-100% purity. All the reads are aligned to the reference genome using
Burrows-Wheeler Aligner (BWA) 25. The bam indexes are generated by samtools 26. Figure 1 is the
flowchart for generating simulated data. In total, we generated four simulation datasets.
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1. The first dataset (label: low-cov-single-clone) contains 9 tumor samples with
sequencing coverage at 5X, no subclone, 10 CNA events, and tumor purity from 0.1 to 0.9
(step=0.1).

2. The second dataset (low-cov-w-subclone) contains 9 tumor samples with sequencing
coverage at 5X, two or three subclones, 10 CNA events, and tumor purity from 0.1 to 0.9
(step=0.1).

3. The third dataset (high-cov-w-subclone) contains 3 tumor samples with sequencing
coverage at 30X, tumor purity at 0.7, and containing 1, 2, or 3 subclones.

4. The fourth dataset (low-cov–more-CNA) contains 9 tumor samples with sequencing
coverage at 5X, no subclone, tumor purity from 0.1 to 0.9 (step=0.1), a higher number of
CNA events (=21).

Figure 1.Workflow to generate the simulation data.



2.3 Algorithm Evaluation

We designed our evaluation metrics (precision and recall) to take both the locations of identified
copy number alterations and their assigned copy number into account, while most traditional
CNV-algorithm evaluation metrics only consider the locations. We use X to represent the true
CNA set, and Y to represent the estimated CNA set by an algorithm. X and Y contain only
non-normal (copy-number!=2) chromosomal regions. We use n and m (i and j as their indices) to
denote the number of elements in set X and Y respectively. B and C represent the region
(chromosome, start, end) and the copy number of a CNA respectively. Therefore:

The intersection set of X and Y (X∩Y) is defined as follows. 1) If the two segments are on the
same chromosome, the intersection is their overlapping portion. 2) If the two segments are not
on the same chromosome, the intersection is null. The union of X and Y (X⋃Y) is similarly defined,
Figure 2.

Figure 2. Schematic diagram of collections and their operations

The precision and recall are defined as follows. The in the numerator is a metric between𝑒
−|𝐶

𝑖
−𝐶

𝑗
|

0 and 1. It is 1 if two copy numbers are identical and is less than 1 if the two differ.



3 Results

3.1 How tumor purity impacts CNA detection accuracy

We used the first simulation dataset (low-cov-single-clone) to evaluate Accucopy, ControlFreeC,
and Sequenza. Figure 3a shows the recall and precision of three algorithms, in which the
Accucopy dots are concentrated in the upper right corner. The Sequenza dots are scattered,
indicating that its results are unstable for this simulation data. The ControlFreeC results are
concentrated either in the upper right or lower left corner, which suggests it can perform well
under certain conditions but poorly under other conditions. Figure 3b plots the recall and
precision of three algorithms under different tumor purity. Combining Figure a and Figure 3b, it
can be concluded that the performance of Accucopy is best, with high recall and high precision
regardless of the tumor purity. ControlFreeC performs well if the sample purity is above 0.6 but
performs poorly if the sample purity is lower than 0.6. Sequenza seems to perform poorly at
these sequencing-coverage=5X samples regardless of the tumor purity.

Making an accurate inference about the tumor purity is critical for these algorithms. Figure 3c
shows the relationship between the tumor purity estimates by three algorithms and the true
value. Accucopy is the most accurate in inferring the tumor purity. The ControlFreeC estimates
are only accurate if the true purity is about 0.6 or higher, which explains why its authors claim
that tumor purity inference by ControlFreeC will only work if the tumor purity is higher than 50%
21. Figure 3d shows the relationship between the true tumor purity and the cancer-cell ploidy
estimates by three algorithms. Cancer-cell ploidy estimates by Accucopy are consistently close
to the true cancer-cell ploidy. ControlFreeC tends to estimate the ploidy of cancer cells always as
an integer (=2). For Sequenza, its cancer-cell ploidy estimates have a strong linear relationship to
tumor sample purity, the cause of which is uncertain. Considering Figure 3b and 3c together, we
conclude that if an algorithm’s tumor purity estimate is close to the true tumor purity, its CNA
estimates tend to be more accurate.

https://www.zotero.org/google-docs/?JCbOHr


Figure 3. Comparison of CNA calling, tumor purity, and cancer-cell ploidy inference under
different tumor purity. a) Scatter plots of precision and recall. Each dot represents one tumor
sample. The size of each dot is proportional to its tumor purity. The colors correspond to
different algorithms. b) Plot precision and recall as a bar plot vs true tumor purity. c) True tumor
sample purity vs. estimated purity. d) True tumor purity (X-axis) vs. estimated cancer-cell ploidy.
The gray line in panel d is the true cancer-cell ploidy (all simulated tumor samples are of the
same cancer-cell ploidy). The closer each algorithm is to the gray line, the better it is.

3.2 How sequencing depth impacts algorithm performance
We ran three algorithms on single-clone simulated data at sequencing depth of 5X or 30X to
evaluate the impact of sequencing depth on their performance. Due to the prohibitively long
running time on 30X data (esp. Sequenza), we only compared their performance on samples with
tumor purity of 0.7. Table 2 shows the corresponding precision and recall   of three algorithms.
Figure 4a is the comparison between the inferred CNAs of three algorithms and the true CNAs at
5X, and Figure 4b is the comparison at 30X. Taken together all results, the performance of
Accucopy and ControlFreeC is consistently high at 5X or 30X. However, the performance of
Sequenza is pretty poor at 5X and only improves at 30X.

Table 2. The performance of each algorithm at different sequencing depths with true tumor
purity =0.7.



Sequencing

Depth

Accucopy ControlFreeC Sequenza

Recall Precision Recall Precision Recall Precision

5X 0.9855 0.9855 0.9993 0.9992 0.1929 0.0287

30X 0.9638 0.9638 0.9994 0.9994 0.9535 0.9969

Figure 4. The performance of each algorithm at different sequencing depths. a) Sequencing
depth at 5X. b) Sequencing depth at 30X. The CNA ground truth is plotted at the top of each
panel. Red segments are clonal while the green ones are subclonal.



3.3 How tumor heterogeneity impacts algorithm performance

We mimicked tumor heterogeneity by simulating tumor samples with one, two, or three
subclones, corresponding to the first and second simulation dataset. The comparison results are
shown in Fig. 5. Fig. 5a and Fig. 5b are the results for tumor samples containing two subclones.
Figure 5c and Figure 5d are the results for three subclones. The performance of Accucopy and
ControlFreeC slightly decreased from two subclones to three subclones, indicated by the lower
recall bar in Fig 5d vs 5b.

Figure 6a plots the recall and precision of Accucopy, ControlFreeC, and Sequenza vs the number
of subclones while the tumor purity is fixed at 0.8. Figure 6b shows a similar plot but the tumor
purity is fixed at 0.9. Regarding the impact on CNA estimates, the number of subclones in a
tumor sample is statistically confounded with tumor purity. For example, tumor sample 1
contains 40% normal cells and 60% monoclonal cancer cells, the copy number of locus G in
normal cells is 2, the corresponding copy number in cancer cells is 4, so the observed copy
number of locus G is 3.2 (=2*0.4+4*0.6). In another sample, sample 2 consists of 20% normal
cells and 80% cancer cells, in which the cancer cells consist of two subclones. Cancer clone A is
40% of the entire tumor sample, and clone B is also 40%. Similarly, the copy number of locus G in
normal cells is 2, its copy number in cancer clone A is 3, and its copy number in cancer clone B is
4, then the observed copy number of locus G is 3.2 (=2*0.2+3*0.4+4*0.4), the same as sample 1.
But in fact, the copy number of locus G in cancer cells of sample 1 is 4, while its copy number in
cancer cells of sample 2 is 3 or 4 depending on which clone.

In general, as tumor heterogeneity (proxied by the number of subclones in a tumor sample)
increases, the performance of both Accucopy and ControlFreeC decreases. Sequenza is too
unreliable at low coverage (5X) to be included to draw any conclusion. Accucopy has the ability
to estimate whether a segment is clonal (same CNA state across all cancer cells in a tumor
sample) or subclonal, but the ability is not perfect at present. ControlFreeC does not discriminate
between clonal or subclonal segments, so the number of subclones has a greater impact on
ControlFreeC than Accucopy, Figure 6. Based on these results, we conclude that the performance
of these algorithms decreases as the number of subclones increases.



Figure 5. Compare performance under different subclone scenarios. a) Scatter plot of precision
and recall of three algorithms with two subclones. The size of each dot is proportional to the
purity of the corresponding sample. b) Barplots of precision and recall vs true tumor purity with
two subclones. c) Scatter plot of precision and recall of three algorithms with three subclones. b)
Barplots of precision and recall vs true tumor purity with three subclones.



Figure 6. CNA recall and precision under different levels of tumor heterogeneity. a) Tumor sample
purity=0.8. b) Tumor purity=0.9. The blue bar represents samples with one subclone. The green
bar represents samples with two subclones. The red bar represents samples with three
subclones

3.4 How abundance of CNAs impacts algorithm performance

To investigate how abundance of CNAs impacts algorithm performance, we used two simulation
datasets, low-cov-single-clone and low-cov–more-CNA. Figures 7a and 7b are the results based
on the first dataset, and Figures 7c and 7d are the results based on the second dataset.
Sequenza is again a bit an outlier. When tumor purity is 0.6 or 0.7, Sequenza performed
significantly better with more CNAs in the sample. Sequenza performed poorly in samples with
true tumor purity equal to 0.8 or 0.9 because its tumor purity and cancer-cell ploidy estimates
were wrong. Overall, as the number of CNA events increases, all three algorithms improve,
presumably because more CNA events can provide more information for inference.



Figure 7. Compare algorithm performance under different numbers of CNA events. a) The scatter
plot of precision and recall for samples with the number of CNA events equal to 10. b) The
barplot of precision and recall with the number of CNAs equal to 10. c) The scatter plot of
precision and recall with the number of CNA events equal to 21. d) The barplot of precision and
recall with the number of CNAs equal to 21.

3.5 Running time comparison

Table 3 shows the running time of three algorithms running on 5X samples. The CPU model
tested is Intel Xeon E5-2630@2.4GHz, and each program is allocated with 10GB of memory. It
can be seen that the running time of Accucopy and ControlFreeC is relatively short. Both usually
finish within 1-2 hours, while Sequenza takes nearly two days. This is due to not only the
differences in algorithm design, but also different programming languages in which the
algorithms were implemented. In terms of algorithm design, ControlFreeC does not involve a
large amount of computing, while Accucopy and Sequenza have a large amount of computing
due to the likelihood estimation step. Also the latter two need to search a space of parameters to
find the optimal one. But Sequenza is more brute-force (exhausting the entire search space) than
Accucopy (use the periodic pattern in coverage ratio to guide the search). In terms of
programming languages, Accucopy and ControlFreeC were mainly written in high-performance



languages such as C++ or Rust, but Sequenza was written in Python and R. Hence, Sequenza
runs considerably longer than ControlFreeC or Accucopy.

Table 3. The running time of each algorithm on input with sequencing depth of 5X.

Monoclonal
sample

Two
subclones

Three
subclones

Low CNA
number

High CNA
number

Accucopy 41 min 76 min 71 min 41 min 43 min

ControlFre
eC

47 min 80 min 86 min 47 min 81 min

Sequenza 29h 47min 39h 48min 36h 34min 29h 47min 40h 14min

4 Discussion
In this study, we compared the CNA inference capability of Accucopy, ControlFreeC, and
Sequenza on simulated tumor-normal WGS data. We simulated tumor samples by varying tumor
purity, the number of subclones, the sequencing depth, and the number of copy number
alterations in cancer cells. Based on the simulation results, Accucopy has been shown to be the
best overall and has a relatively short running time. For coverage=5X samples, ControlFreeC
requires the tumor purity to be above 50% to perform well. When the tumor purity is lower than
50%, its results are quite unreliable. We think this is related to the algorithm it uses to infer the
tumor purity. But its running time is reasonably fast. Sequenza did not perform well in
low-coverage or few-CNA settings. But if the data can provide better statistical signals, such as
higher sequencing depth (i.e. 30X) and more abundant CNAs, it can produce reliable results. But
it takes days to finish.

For any deep-sequencing based CNA detection algorithm, the correct inference of tumor purity is
the key to its success. Besides the correctness of tumor purity estimates, users have to consider
if a chosen algorithm fits your use case. For example, not all algorithms can work in
low-coverage samples. Secondly, the running time of algorithms can differ by an order of
magnitude. Some algorithms are slow due to complex models or the choice of slow
programming languages. For three algorithms we compared: Accucopy, ControlFreeC and
Sequenza. Accucopy adopts a model more complex than ControlFreeC, which is why it performs
well in low-coverage and low-tumor-purity samples. Models of Accucopy and Sequenza are of
similar complexity. But Accucopy is optimized to have a smaller search space, so its running time
is considerably less than that of Sequenza.

The detection of subclonal segments, the inference of the genotype of subclonal segments and
the inference of the number of subclones in the sample are questions that have not been
thoroughly compared. Accucopy can only tell if a segment is subclonal or not, but can infer
neither the number of subclones nor the genotypes in all subclones, while ControlFreeC and



Sequenza do not consider subclones. Many algorithms 27–32 have been proposed to tackle the
problem of inferring the number of subclones and genotypes of subclonal segments.

Our simulation-based comparative study is by no means comprehensive. For example, we only
compared sequencing depth at 5X and 30X. The simulated samples are simple relative to clinical
samples while the latter display all sorts of tumor heterogeneity and much more complex CNAs.
However, we hope this limited benchmark study can offer some guidance to users at large.
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