
eGADA: enhanced Genomic Alteration Detection
Algorithm, a fast genomic segmentation algorithm
based on Sparse Bayesian Learning

Yu S. Huang1,2,3,4,5*

1. Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.

2. Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA

3. Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, Shanghai 201203, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Current affiliation: Genecast Biotechnology Co., Ltd., Wuxi 214105, Jiangsu, China.

* Correspondence: polyactis@gmail.com (YS Huang)

Abstract

eGADA is an enhanced version of GADA, which is a fast segmentation algorithm
utilizing the Sparse Bayesian Learning (or Relevance Vector Machine) technique from
Tipping 2001. It can be applied to array intensity data, NGS sequencing coverage data,
or any sequential data that displays characteristics of stepwise functions. Improvements
by eGADA over GADA include: a) a customized Red-Black tree to significantly expedite
the final backward elimination step of GADA; b) code in C++, which is safer and better
structured than C; c) use Boost libraries extensively to provide user-friendly help and
commandline argument processing; d) user-friendly input and output formats; e) export
a dynamic library eGADA.so (packaged via Boost.Python) that offers API to Python; f)
some bug fixes/optimization. The code is published at
https://github.com/polyactis/eGADA.

Keywords: Genomics, Red-Black-Tree, Segmentation, EM-algorithm, Sparse Bayesian
Learning, Relevance Vector Machine, Microarray, NGS sequencing

https://github.com/polyactis/eGADA
https://github.com/topics/segmentation
https://github.com/topics/em-algorithm
https://github.com/topics/sparse-bayesian-learning
https://github.com/topics/sparse-bayesian-learning
https://github.com/topics/relevance-vector-machine

Introduction

Genomic segmentation is a crucial prerequisite to detect copy number variants or
alterations (CNV/CNA). The GADA algorithm 1–3 tackles the segmentation problem via
the Sparse Bayesian Learning (also known as Relevance Vector Machine)4 technique to
discover the minimal number of stepwise functions/wavelets (and hence the
breakpoints) to describe the entire genome.

SBL used by GADA is a fast Bayesian learning algorithm. However, the
backward-elimination (BE) step after SBL, which is to remove insignificant breakpoints,
is quite slow. The BE step finds and removes the least significant breakpoint. The
significance of breakpoints is established by the t-statistic comparing coverage of two
flanking segments or the breakpoint segment length (defined as the shorter length of
two flanking segments) to break ties. This step will stop until two criteria have been met:
a) t-statistics of all breakpoints are above a pre-set threshold; b) the number of
probes/bins of each segment is above a pre-set threshold. If there are n breakpoints to
begin with, the GADA implementation for the BE step would take O(n2) operations. For
a whole-genome sequencing tumor sample data, n could be as high as millions and this
step becomes the most time-consuming part of GADA.

Methods

To speed up the BE step, eGADA uses a Red-Black (RB) tree to store all segment
breakpoints as nodes in the tree and then eliminate the least significant breakpoint
based on the tree. Breakpoints are sorted by their corresponding t-statistic if either
t-statistic is below a pre-set threshold. Otherwise, sort them by their segment length.
The segment length of a breakpoint is defined as the length of the shorter flanking
segment. Red-Black tree has a time complexity of O(log(n)) for both building and
querying the tree. So the time complexity of the BE step is improved from O(n2) to
O(n*log(n)).

Removing the least significant breakpoint is non-trivial as it involves not only removing
this node from the tree, but also merging two flanking segments into a new segment

https://www.zotero.org/google-docs/?w1AzCx
https://www.zotero.org/google-docs/?QfEOKE

and updating the t-statistics of two endpoints/breakpoints (and their positions in the RB
tree). Here is a snippet of github eGADA/src/BaseGADA.cc .

rbNodeType* minNodePtr = NULL;
minNodePtr = rbTree.getMinimum();
BreakPointKey minBPKey=minNodePtr->getKey();
rbNodeDataType* setOfBPPtr = minNodePtr->getDataPtr();
rbNodeDataType::iterator setOfBPIterator=(*setOfBPPtr).begin();
//reset
leftBreakPointPtr=NULL;
rightBreakPointPtr=NULL;
genomeLeftNodePtr=rbTree.nil;
genomeRightNodePtr=rbTree.nil;

currentMinScore = minBPKey.tscore;
toRemoveSegmentLength = minBPKey.segmentLength;

while (rbTree.noOfNodes()>0 && (currentMinScore<T ||
toRemoveSegmentLength<MinSegLen)){

minBPKey = minNodePtr->getKey();
setOfBPPtr = minNodePtr->getDataPtr();
for (setOfBPIterator =(*setOfBPPtr).begin(); setOfBPIterator!=(*setOfBPPtr).end();

setOfBPIterator++){
//remove all breakpoints in this node's data (they have same tscore and length)
BreakPoint* minBPPtr = *setOfBPIterator; //get address of BreakPoint
leftBreakPointPtr = minBPPtr->leftBreakPointPtr;
rightBreakPointPtr = minBPPtr->rightBreakPointPtr;

//update two neighboring break points.
minBPPtr->removeItself();

//modify genome left & right key, delete their nodes from tree and re-add them with new
key and update breakpoint info

if (leftBreakPointPtr!=NULL && leftBreakPointPtr->nodePtr!=rbTree.nil &&
leftBreakPointPtr->nodePtr!=NULL){
//delete the outdated left node
genomeLeftNodePtr = (rbNodeType*)leftBreakPointPtr->nodePtr;
genomeLeftNodePtr->getDataPtr()->erase(leftBreakPointPtr);
if (genomeLeftNodePtr->getDataPtr()->size()==0){

//delete this node altogether if its vector is empty
rbTree.deleteNode(genomeLeftNodePtr);

}
//new genomeLeftNodePtr that matches the new key
genomeLeftNodePtr = rbTree.queryTree(leftBreakPointPtr->getKey());
if (rbTree.isNULLNode(genomeLeftNodePtr)){

//create an new node
genomeLeftNodePtr = rbTree.insertNode(leftBreakPointPtr->getKey(),

new rbNodeDataType());

https://github.com/polyactis/eGADA/blob/main/src/BaseGADA.cc

}
genomeLeftNodePtr->getDataPtr()->insert(leftBreakPointPtr);
leftBreakPointPtr->nodePtr = genomeLeftNodePtr;

}
if (rightBreakPointPtr!=NULL &&

!rbTree.isNULLNode((rbNodeType*)rightBreakPointPtr->nodePtr) &&
rightBreakPointPtr->nodePtr!=NULL){
//delete the outdated right node
genomeRightNodePtr = (rbNodeType*)rightBreakPointPtr->nodePtr;
genomeRightNodePtr->getDataPtr()->erase(rightBreakPointPtr);
if (genomeRightNodePtr->getDataPtr()->size()==0){

//delete this node altogether if its vector is empty
rbTree.deleteNode(genomeRightNodePtr);

}
//new genomeRightNodePtr that matches the new key
genomeRightNodePtr = rbTree.queryTree(rightBreakPointPtr->getKey());
if (rbTree.isNULLNode(genomeRightNodePtr)){

//create an new node
genomeRightNodePtr = rbTree.insertNode(rightBreakPointPtr->getKey(),
new rbNodeDataType());

}
genomeRightNodePtr->getDataPtr()->insert(rightBreakPointPtr);
rightBreakPointPtr->nodePtr = genomeRightNodePtr;

}
}
(*setOfBPPtr).clear();
//delete this minimum node after its data is all tossed out
rbTree.deleteNode(minNodePtr);

counter ++;
previousRoundMinScore = minBPKey.tscore;
previousToRemoveSegmentLength = minBPKey.segmentLength;
if (rbTree.noOfNodes()>0){

//get a new minimum
minNodePtr = rbTree.getMinimum();
minBPKey = minNodePtr->getKey();
currentMinScore = minBPKey.tscore;
toRemoveSegmentLength = minBPKey.segmentLength;

}
else{

break;
}

}

The Red-Black tree data structure was written in C++ template to broaden its potential
applications. Here is a snippet of github.com eGADA/src/RedBlackTree.h.

https://github.com/polyactis/eGADA/blob/main/src/RedBlackTree.h

template<typename keyType, typename dataType>
class RedBlackTreeNode {
public:

keyType key;
dataType* dataPtr;
unsigned short color;
/* if red=0 then the node is black */
RedBlackTreeNode<keyType, dataType> * left;
RedBlackTreeNode<keyType, dataType> * right;
RedBlackTreeNode<keyType, dataType> * parent;

RedBlackTreeNode() {
parent = NULL;
dataPtr = NULL;
this->left = NULL;
this->right = NULL;
this->color = RED_;

}

/*
* key_, data_ are references, and have to be initialized in the way above.
*/
RedBlackTreeNode(RedBlackTreeNode<keyType, dataType>* _parent, keyType _key,

dataType* _dataPtr) :
parent(_parent), key(_key), dataPtr(_dataPtr) {

this->left = NULL;
this->right = NULL;
this->color = RED_;

}

~RedBlackTreeNode() {
// no memory to release?

}

…

void setKey(keyType key) {
this->key = key;

}

void setColor(short color) {
this->color = color;

}

};

Besides using RB tree to expedite the BE step, we reorganized code into several C++
classes to better structure the source code, used Boost libraries extensively to provide
user-friendly help, commandline argument processing, and user-friendly input and
output formats, used Boost Python library to export a dynamic library eGADA.so for
Python to call. There were also some bug fixes/optimization (reduce memory usage).

Here is a snippet to call GADA from Python after eGADA.so is built.

import eGADA

print("### Testing the C++ eGADA.so module ...\n", flush=True)

Pass 1 to eGADA() to enable debugging output.

Passing 0 or no passing, i.e. eGADA.eGADA() turns off debugging.

ins = eGADA.eGADA(1)

test_vector = [1,1,1,1,0.99,0.99,1,1,0.1,0.1,0.1,0.15]

0.2 is alpha, 4 is min T score, 2 is min segment length.

segment_ls = ins.run(test_vector, 0.2, 4, 2)

print(f'Segmenting {test_vector} output is:\n \t {segment_ls}.\n')

If a user encounters compiling issues, we recommend the docker image
https://hub.docker.com/repository/docker/polyactis/egada .

Results
We ran eGADA and GADA on different inputs with identical parameters (--T 5, –alpha
0.2, –min_segment_length 0,). Table 1 and Fig 1 are the runtime comparison results.
The results confirm the theoretical time complexity analysis in the Methods section.
eGADA scales log-linearly, O(n*log(n)), to n, the number of input data points, while
GADA scales squarely, O(n2). The fraction of computing time saved will grow ever larger
as the number of input data points increase.

https://hub.docker.com/repository/docker/polyactis/egada

Table 1. Runtime (in seconds) comparison between eGADA vs GADA. Original input is
https://github.com/polyactis/eGADA/blob/main/data/input.txt, which contains 80K data
points. The inputs above are 4X, 16X, 160X of original data. Runtime is averaged
across over five repeats.

Input 320K data
points

1.28M data points 6.4M data points 12.8M data
points

eGADA 1.88 8.52 53.60 102.63

GADA 2.85 13.88 110.74 326.35

Fig 1. Plot data of Table 1 in a scatterplot form. X-axis is the number of data points in
each input. Y-axis is the runtime of eGADA or GADA.

We also compared eGADA with BIC-seq2 6, in segmenting the genomic data (each
input data point is normalized coverage of a 500bp bin) of simulated and TCGA
samples, and found eGADA can produce similar segmentation results (data not shown)

https://github.com/polyactis/eGADA/blob/main/data/input.txt
https://www.zotero.org/google-docs/?ljO2AJ

while being much faster. We included it as part of Accucopy, a tumor-purity and CNA
inference software5.

Acknowledgement
Most of the development of eGADA took place while the author was a graduate student
at USC, as a result of befriending Dr. Pique-Regi during a research project. The code
was further polished over the years. Thank Dr. Pique-Regi for several discussions about
the ideas behind the algorithm. Thank Dr. Xinping Fan for fixing a bug in the RB C++
template code.

References
1. Pique-Regi R, Tsau ES, Ortega A, Seeger R, Asgharzadeh S. Wavelet Footprints and Sparse

Bayesian Learning for DNA Copy Number Change Analysis. In: Vol 1. ; 2007:353-356.
doi:10.1109/ICASSP.2007.366689

2. Pique-Regi R, Monso-Varona J, Ortega A, Seeger RC, Triche TJ, Asgharzadeh S. Sparse
representation and Bayesian detection of genome copy number alterations from microarray
data. Bioinforma Oxf Engl. 2008;24(3):309-318. doi:10.1093/bioinformatics/btm601

3. Pique-Regi R, Ortega A, Asgharzadeh S. Joint estimation of copy number variation and
reference intensities on multiple DNA arrays using GADA. Bioinforma Oxf Engl.
2009;25(10):1223-1230. doi:10.1093/bioinformatics/btp119

4. Tipping ME. Sparse Bayesian Learning and the Relevance Vector Machine. J Mach Learn
Res. 2001;1(Jun):211-244.

5. Fan X, Luo G, Huang YS. Accucopy: accurate and fast inference of allele-specific copy
number alterations from low-coverage low-purity tumor sequencing data. BMC
Bioinformatics. 2021;22(1):23. doi:10.1186/s12859-020-03924-5

6. Xi R, Lee S, Xia Y, Kim TM, Park PJ. Copy number analysis of whole-genome data using
BIC-seq2 and its application to detection of cancer susceptibility variants. Nucleic Acids Res.
2016;44(13):6274-6286. doi:10.1093/nar/gkw491

https://www.zotero.org/google-docs/?UU5izu
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD
https://www.zotero.org/google-docs/?8xD8gD

