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A B S T R A C T   

Deep learning-based virtual screening methods have been shown to significantly improve the accuracy of 
traditional docking-based virtual screening methods. In this paper, we developed Deffini, a structure-based 
virtual screening neural network model. During training, Deffini learns protein-ligand docking poses to distin
guish actives and decoys and then to predict whether a new ligand will bind to the protein target. Deffini out
performed Smina with an average AUC ROC of 0.92 and AUC PRC of 0.44 in 3-fold cross-validation on the 
benchmark dataset DUD-E. However, when tested on the maximum unbiased validation (MUV) dataset, Deffini 
achieved poor results with an average AUC ROC of 0.517. We used the family-specific training approach to train 
the model to improve the model performance and concluded that family-specific models performed better than 
the pan-family models. To explore the limits of the predictive power of the family-specific models, we con
structed Kernie, a new protein kinase dataset consisting of 358 kinases. Deffini trained with the Kernie dataset 
outperformed all recent benchmarks on the MUV kinases, with an average AUC ROC of 0.745, which highlights 
the importance of quality datasets in improving the performance of deep neural network models and the 
importance of using family-specific models.   

1. Introduction 

In the early stages of drug discovery, it is critical to find new mole
cules that bind to protein targets of pharmacological interest. Tradi
tional high-throughput screening assays are expensive and time- 
consuming, with a high failure rate [1]. Generations of computational 
screening methods have been developed to help reduce the cost and time 
in this lead-discovery stage. Traditional methods of virtual screening, 
such as docking, which employs empirical and knowledge-based scoring 
functions, rely on pre-defined parameters that model the intermolecular 
potential energies. Broadly, there are two categories of screening tech
niques: ligand-based and structure-based [2]. Ligand-based virtual 
screening is based on searching molecules similar to the known actives 
without considering the target protein structure, while structure-based 

virtual screening methods utilize information of both the ligand and 
the protein target structure to estimate the likelihood that the ligand will 
bind to the protein with high affinity [3]. 

Despite the undoubted advantages of docking methods, previous 
studies have proved that additional methods are needed to correct the 
docking result even for ligands with the best binding scores [4,5]. Ma
chine learning methods can adapt much more scoring functions such as 
Support Vector Machine [6], Random Forest [7], Deep Neural Network, 
Convolutional Neural Network(CNN), and Graph Neural Network [8], 
utilizing large-scale training sets [3,9] and combining multiple sources 
of information [10,11], can provide great adaptability and trans
ferability [9,12] to solve multiple prediction tasks or classification tasks 
simultaneously [13]. Therefore, it has been routinely and successfully 
applied machine learning methods to re-calculate binding scoring 
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functions. 
CNN is a class of deep learning models commonly applied to analyze 

visual images. When Krizhevsky et al. [14] won the large-scale Image
Net competition by a significant margin over other machine learning 
methods, CNNs showed to be competitive to solve non-image problems 
[15–17], and most notably the structure-based virtual screening 
[18–21]. The first CNN-based scoring function was introduced by Wal
lach et al. [18], which gained much better performance than docking, 
considering local 3D structures of protein-ligand complexes. Recently, 
more CNN models were presented to predict the binding affinity of a 
ligand and its target protein [22,23]. The advantage of the CNN model in 
information extraction is undoubted, however, when applying a 
CNN-based model in transfer learning, the performance may fall short of 
expectations [24]. 

In this work, we developed a CNN-based model, Deffini, to predict 
the probability that a small molecule compound binds a target. During 
the development of the model, we found that to improve generaliz
ability, a family-specific approach to train a model is much better than 
the pan-family approach. Secondly, inspired by the work of Imrie et al. 
[25], which postulates that if more target proteins from the same family 
and their associated ligands are added to the training set, the general
izability of the model will be enhanced, we constructed the Kernie 
dataset, covering 358 kinases and 32,000 compounds, to evaluate the 
performance of the family-specific model. Through various comparative 
analyses, we demonstrated that Deffini outperformed other methods in 
predicting the binding affinity of a ligand and its target protein. 

2. Materials and methods 

2.1. Datasets 

Three different datasets were used to evaluate the performance of 
our virtual screening model, Directory of Useful Decoys – Enhanced 
(DUD-E), Maximum Unbiased Validation (MUV) and Kernie (a self- 
collected kinase dataset). 

DUD-E is an enhanced and rebuilt version of Directory of Useful 
Decoys (DUD) [26], designed to help benchmark structure-based virtual 
screening methods. The 102 targets cover a diverse set of protein fam
ilies, including 22,886 clustered ligands. For each active, 50 decoys are 
drawn from ZINC [27], bearing similar physicochemical properties but 
dissimilar 2-D topology from the active. Ligand clustering is done to 
reduce the number of ChEMBL [28] ligands down to a manageable size 
while also increasing the scaffold diversity as suggested by Good and 
Oprea [29]. 

MUV is a collection of benchmark datasets that is equally unbiased 
for the assessment of the quality of virtual screening methods. The MUV 
datasets were designed to avoid analog bias and artificial enrichment, 
which produce overly optimistic predictions of virtual screening per
formance. Selected from confirmatory screens, actives are maximally 
spread based on simple descriptors and embedded in the chemical space 
of the decoys, with a ratio of actives to decoys of 1:500 (=30:15000). 

Kernei, a large kinase-specific dataset, was constructed by curating 
data from ChEMBL, PubChem, and PDB. In total, we collected 358 ki
nase targets and 32,000 compounds by following the criteria proposed 
by Wallach et al. [18], where targets have annotated binding sites with 
the highest resolution and actives with IC50 or Ki lower than 1 μM. For 
each active compound, 50 decoys were generated using the same pro
cedure as that of DUD-E. 

To train Deffini, we utilized two training sets. The first training set is 
the DUD-E dataset [30], through which we optimized the network to
pology and hyperparameters of Deffini by 3-fold clustered 
cross-validation. We then created two family-specific models by training 
Deffini with the kinase and the protease subsets from DUD-E and eval
uated them on the family-specific independent test sets from the MUV 
(Maximum Unbiased Validation) dataset [31]. The MUV dataset was 
used only for testing, not training. The second training set is Kernie, a 

self-collected kinase-only dataset consisting of 358 kinase targets and 
32,000 compounds. 

2.2. Model input 

Ligand-target complexes were first generated by the Smina [32] 
docking program. We retained the top (the lowest binding energy) 
binding pose of the compound and its protein target and obtained the 
pdbqt files containing the atomic type, coordinate, and charge infor
mation of all atoms in the complex. To transform a ligand-target 3D pose 
into a 2D matrix that is suitable for CNN processing, we adopted the 
structure-information-extraction method proposed by Pereira et al. 
[33], in which the context of an atom is defined by a set of physi
ochemical attributes of its neighborhood, and adopted the 
atom-information-extraction criteria presented by DeepDock [34]. 
Deffini stores the context of each atom in the ligand in one row of the 2D 
matrix and constrains the maximum number of ligand atoms to 100 (if 
the total number of atoms in a ligand is less than 100, the extra rows are 
filled with zeros). Horizontally, the 2D matrix can be decomposed into 
four 2D matricies, corresponding to four attributes respectively. For one 
reference atom a of a ligand, Deffini extracts three attributes (the atom 

Fig. 1. The structure of Deffini model. (A) The input and model structure of 
Deffini. (B) The way to embed the basic attribute matrices. (C) Four embedding 
feature matrices concatenate to the embedding layer. 
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type, charge, and the distance to the reference atom) of kc = 6 neigh
boring atoms in the ligand and kp = 2 neighboring atoms in the target 
protein and stores them in three separate 100 * 8 (100 ligand atoms * 8 
neighboring atoms) sub-matrices. For the last attribute (amino acid 
type), which is only applicable to kp = 2 atoms in the target protein, 
Deffini stores the data in a 100 *2 sub-matrix. This approach is inspired 
by findings from previous studies [35] which highlight the importance 
of physicochemical attributes of neighboring atoms in both the ligand 
and the target protein for structure-based drug design. For encoding the 
four attributes, we discretized the categorical variables (the atom type 
and the amino acid type) by mapping them to integers, and discretized 
the continuous variables (the atomic partial charge and the distance to 
the reference atom) by assigning them to equidistant bins between a 
pre-defined minimum value and maximum value. The final 2D matrix is 
formed by concatenating the four sub-matrices into a 100*26 matrix, 
which approximates the physiochemical environment of the binding 
pocket of a ligand-target complex. 

2.3. Model architecture 

The Deffini model as in Fig. 1A contains one input layer, three batch 
normalization layers, one embedding layer, one convolutional layer, 
three dropout layers, one max-pooling layer, two fully-connected(fc) 
layers, and a sigmoid output that predicts the probability of binding. 

In the embedding layer, each row in the basic attribute matrix is 
transformed into a corresponding embedding matrix in the way that 
each value of a basic attribute is mapped to a real-valued column vector 
of fixed size which is the dimensionality of the embedding (Fig. 1B), and 
four embedding feature matrices are concatenated to generate one 
feature matrix representing the binding information of a ligand 
(Fig. 1C), which forms the basis for the subsequent convolutional layers 
to extract relevant information. 

The convolution layer consists of a variable number of filters. Units 
in one filter take inputs only from a small subregion of the input 2D 
matrix, and all units in a filter are constrained to share the same weight 
values, which can serve as feature detectors. All units in a feature map 
detect the same pattern despite their different locations in the input 
matrix. When the atoms or physiochemical attributes are shifted, the 
activations of the feature map will be shifted by the same amount but 
will otherwise be unchanged. This provides the basis for the invariance 
of the outputs to the rotations of the protein-ligand 3D pose. 

The Deffini model has three dropout layers, which can effectively 
avoid overfitting. Based on a pre-determined probability of dropout, 
these layers temporarily remove a random subset of neurons and their 
connections from the model during training and then update the weight 
parameters of the retained neurons. 

One max pooling layer follows the convolutional layer. We chose the 
max pooling over the average pooling as the latter was shown to oblit
erate predictive performance [25]. The pooling layer reduces the 
dimensionality of the representation, the number of parameters, the 
memory footprint, and the amount of computation in the network. It 

also prevents overfitting. Our max-pooling operation selects the 
maximum value in the matrix along the vertical axis for each column 
vector. After this operation, the input 2D matrix becomes a 
one-dimensional vector, speeding up the training time. 

The final output layer is a fully connected layer with one output 
neuron. The output neuron employs a sigmoid activation function whose 
output is the binding probability of the ligand to the protein target. The 
Deffini model is implemented in the TensorFlow framework [36]. 

2.4. Model training 

To measure the classification (binding or not) performance on a 
dataset, Deffini uses the binary cross-entropy as its loss function, 

Loss= −
1
N
∑N

i=1
yi • log(p(yi)) + (1 − yi) • log(1 − p(yi))

where y is the label (1 for active and 0 for decoy) and p(yi) is the pre
dicted probability that ligand i is active. During the model training, the 
loss is minimized via the backpropagation (BP) algorithm, widely used 
in training feedforward neural networks in supervised learning. In deep 
learning, the BP algorithm computes the gradient of the loss function 
with respect to the node weights of the network backwardly and adjusts 
the weights to further reduce the loss function. To prevent arithmetic 
overflow and underflow in calculating the probability that ligand i binds 
the target protein, we applied Log Softmax 

Li = log
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,

in which M = max(xi), i = 1,…,n. 
During training, the model is optimized by the Adam algorithm 

which leverages the power of adaptive learning rates to find the optimal 
parameters(weights) faster and using fewer resources. We set the initial 
learning rate as 0.0001, the weight decay as 0.001 and the dropout rate 
as 0.1. We train our model with a batch size of 1024 for 11 epochs. The 
order of training data is shuffled for each epoch. The balance of positive 
and negative samples is achieved by having an equal number of negative 
samples to positive samples in each sampling batch. 

2.5. Model evaluation 

It is important to evaluate the generalizability of Deffini to new 
proteins and ligands, rather than its ability to mesmerize the training 
data. We evaluated the performance of the Deffini, against the docking 
program Smina and deep learning methods (Transformer [37], CNN, 
and GanDTI [38]) by three-fold clustered cross-validation, in which 
Transformer and CNN employ the SMILES representation of a ligand as 
model input while GanDTI employs the SMILES and the target protein 
sequence. Proteins were clustered by sequence similarity using CD-HIT 
[39], and only targets with greater than 50% sequence identity were 
included in the same fold to avoid testing on highly similar targets. 

We used three evaluation metrics: the Area Under the Curve of the 
Receiver Operating Characteristic (AUC ROC), the Area Under the Curve 
of the Precision-Recall Curve (AUC PRC), and the enrichment factor 
(EF). AUC ROC and AUC PRC are highly correlated and are used to 
evaluate binary classification problems in machine learning on a given 
dataset. If the classification is completely random, the AUC ROC will be 
equal to 0.5 but the AUC PRC will be proportional to the imbalance of 
the data. The enrichment factor (EF) at x% measures the enrichment of 
actives among the top x% ranked compounds. 

EF at x%=
number of actives at top x%

number of molecule at top x%
×

number of total molecules
number of total actives

.

Table 1 
Results of Deffini and other models in 3-fold cross-validation on the DUD-E 
dataset.  

Method AUC_ROC AUC_PRC EF1% EF5% EF10% 

Deffini 0.921 ±
0.077 

0.440 ±
0.224 

21.597 ±
11.131 

11.861 ±
4.350 

7.426 ±
1.977 

GanDTI 0.860 ±
0.087 

0.240 ±
0.1823 

16.171 ±
11.472 

8.921 ±
4.301 

5.930 ±
2.099 

CNN 0.858 ±
0.098 

0.247 ±
0.185 

16.573 ±
11.030 

9.166 ±
4.506 

5.972 ±
2.213 

Transformer 0.825 ±
0.100 

0.195 ±
0.156 

13.581 ±
10.425 

7.562 ±
4.058 

5.212 ±
2.104 

Smina 0.712 ±
0.119 

0.132 ±
0.117 

8.273 ±
8.516 

4.474 ±
2.845 

3.342 ±
1.707  
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3. Results 

3.1. Transfer learning: training and testing on different proteins within the 
same dataset. Performance on the three-fold clustered cross-validation of 
DUD-E 

We carried out a three-fold clustered cross-validation on the DUD-E 
dataset for Deffini. Deffini achieved an average AUC_ROC of 0.921, AUC 
PRC of 0.440, EF at 1% of 21.6, EF at 5% of 11.9, and EF at 10% of 7.4, 
which significantly outperformed Smina and other deep learning ap
proaches, Table 1, Fig. 2. 

3.2. Transfer learning: training with the entire DUD-E, testing on MUV 

We then derived the pan-family model by training Deffini with the 
entire DUD-E dataset and tested its performance on the MUV dataset. 
The pan-family model achieved an average AUC ROC of 0.517, AUC PRC 
of 0.003, EF1% of 1.531, EF5% of 1.179, and EF10% of 1.179, Table 2. 
The results of deep-learning models were even worse than that of Smina. 
Overall, their results were significantly worse than those observed in the 
three-fold clustered cross-validation of DUD-E. 

One of the main causes for the poor results is the significant imbal
ance of actives and decoys in the MUV dataset. Decoys are characterized 
by their structural similarity to actives, but their physiochemical prop
erties are different from actives, and thus have no activity with the 
corresponding protein. During training, a high-learning capacity model 
tries to internalize the target-binding differences between decoys and 
actives as much as it can, but its capacity is limited by the scope of the 
training dataset. The DUD-E dataset has an active to decoy ratio of 1:50 
while the MUV dataset has an active to decoy ratio of 1:500. When the 
ratio of decoys increases, the chance of misclassifying ligands will also 
increase, which sets a lower bar to begin with. The higher active-to- 
decoy ratio, 10 times more imbalanced than DUD-E, and the much 
larger amount of decoys in MUV make it highly challenging for any 
model trained on DUD-E to generalize well on MUV. 

Furthermore, the curse of dimensionality in the high-dimensional 
physiochemical space of all proteins and ligands also lead to the poor 
performance. The large inter-protein-family distance limited coverage of 
DUD-E in the feature space. However, due to the sequence similarity, 
proteins from the same family are likely to cluster locally in the 

Fig. 2. Performance comparison of Deffini and the other models in clustered three-fold cross-validation of the DUD-E. Violin plots were used to display the dis
tribution of each evaluation metric. (A) AUC of ROC curve (AUC_ROC). (B) AUC of PRC curve (AUC_PRC). (C) Enrichment factor at 1% (EF1%). (D) Enrichment factor 
at 5% (EF5%). Deffini outperformed Smina and several deep learning approaches with respect to all metrics in this setting. 

Table 2 
Testing results on the whole MUV dataset of different models trained with the 
entire DUD-E.  

Method AUC_ROC AUC_PRC EF1% EF5% EF10% 

Smina 0.529 ±
0.082 

0.003 ±
0.001 

1.787 ±
1.722 

1.127 ±
1.067 

1.410 ±
0.894 

Deffini 0.517 ±
0.064 

0.003 ±
0.003 

1.531 ±
2.910 

1.179 ±
0.867 

1.179 ±
0.520 

Transformer 0.519 ±
0.054 

0.002 ±
0.000 

0.510 ±
1.245 

0.718 ±
0.506 

0.846 ±
0.483 

CNN 0.498 ±
0.066 

0.002 ±
0.000 

0.255 ±
0.920 

0.564 ±
0.534 

0.743 ±
0.512 

GanDTI 0.463 ±
0.082 

0.002 ±
0.001 

0.000 ±
0.000 

0.718 ±
0.743 

0.743 ±
0.454  
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physiochemical space. Likewise, the active ligands and decoys from the 
same protein family are also likely to cluster in the physiochemical 
space. Overall, it is a sparse space with local concentration for individual 
protein families and their associated actives and decoys. Deffini trained 
with the whole DUD-E is likely to pick up biases between all active li
gands and decoys, rather than protein-ligand binding information [40], 
which explains why Deffini performed well in the cross-validation on the 
dataset itself but generalized poorly to new proteins and ligands in MUV. 
Learning bias in the training stage and the unbalance of active vs decoy 

in the MUV dataset resulted in Deffini and other deep learning models to 
perform poorly in the MUV dataset. 

3.3. Transfer learning: training with family-specific DUD-E data showed 
improved performance on MUV 

Proteins from the same family usually share a common origin with 
similar 3D structure, function, and significant sequence similarity, 
which are easily to show local aggregation in the materialization space, 

Table 3 
Testing results on the MUV kinase subset of Deffini models trained with different DUD-E subsets.  

Training set AUC_ROC AUC_PRC EF1% EF5% EF10% 

DUD-E Kinase 0.685 ± 0.155 0.006 ± 0.004 4.147 ± 4.175 2.665 ± 1.961 2.583 ± 1.730 
DUD-E GPCR 0.555 ± 0.068 0.004 ± 0.002 2.488 ± 3.177 1.832 ± 1.138 1.417 ± 0.4120 
DUD-E 0.545 ± 0.070 0.003 ± 0.001 0.829 ± 1.659 1.166 ± 0.333 1.333 ± 0.720 
DUD-E Miscellaneous 0.507 ± 0.052 0.003 ± 0.001 1.659 ± 1.915 0.833 ± 0.838 0.583 ± 0.500 
DUD-E Protease 0.459 ± 0.060 0.002 ± 0.000 0.830 ± 1.659 0.666 ± 0.000 0.583 ± 0.319  

Table 4 
Testing results on the MUV protease subset of Deffini models trained with different DUD-E subsets.  

Training set AUC_ROC AUC_PRC EF1% EF5% EF10% 

DUD-E Protease 0.564 ± 0.050 0.003 ± 0.001 3.318 ± 3.318 1.332 ± 1.332 1.111 ± 0.509 
DUD-E 0.532 ± 0.081 0.002 ± 0.001 0.000 ± 0.000 0.666 ± 0.666 1.333 ± 0.333 
DUD-E Miscellaneous 0.498 ± 0.050 0.002 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.444 ± 0.509 
DUD-E Kinase 0.474 ± 0.037 0.002 ± 0.000 0.000 ± 0.000 0.444 ± 0.769 1.000 ± 0.667 
DUD-E GPCR 0.470 ± 0.041 0.002 ± 0.000 0.000 ± 0.000 0.222 ± 0.385 0.333 ± 0.333  

Fig. 3. Performance comparison of Smina, several deep learning methods and Deffini in clustered three-fold cross-validation of the Kernie dataset. Violin plots were 
used to display the distribution of each evaluation metric. (A) AUC of ROC curve (AUC_ROC). (B) AUC of PRC curve (AUC_PRC). (C) Enrichment factor at 5% (EF5%). 
(D) Enrichment factor at 10% (EF10%). Deffini outperformed Smina with respect to all metrics in this setting. 
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so we speculate that restricting the training and test set data to be from 
the same protein family may exhibit better performance. 

To test the hypothesis that employing training data the model 
generalizability, we derived family-specific models by restricting 
training data from a single protein family, which was shown to 
outperform a pan-family model trained with data from all protein 
families [41,42]. We constructed two family-specific models training by 
the 26 kinase subset and 15 protease subset of DUD-E, and tested on 4 
kinase targets and 3 protease targets from MUV, respectively. 

Adopting the kinase-specific model instead of the pan-family model 
led to average improvement in AUC_ROC of 25.7%, and AUC_PRC of 
100%, Table 3. Consistent results were also exhibited in the kinase- 
specific experiment with an improvement of AUC_ROC by 6.0%, and 
AUC_PRC by 50%, Table 4, compared to the pan-family model. And both 
the kinase-specific and protease-specific model showed better perfor
mance in the family-matching MUV subsets. We conclude that family- 
specific models are better at extracting protein-binding-specific infor
mation than the pan-family model, which leads to their improved 
generalizability. 

3.4. Deffini performed well on the three-fold cross-validation of Kernie 

The kinase protein family-specific Deffini model was constructed 
with the kinase targets data in the DUD-E dataset. However, due to the 
small amount of data in the training set, it is easy to lead to model 
overfitting and poor model generalization ability, which affects the 
performance on the test set. Therefore, we constructed a dataset, Kernie, 
with much larger amount of data than the kinase targets data in DUD-E. 

Kernie contains 358 kinase target 3D information and Fig. 3 shows 
the evaluation result of three-fold clustered cross-validation on the 
Kernie dataset, with an average AUC_ROC of 0.985, AUC_PRC of 0.857, 
EF at 1% of 44.8, EF at 5% of 17.2, and EF at 10% of 9.1, outperforming 
other deep learning methods and significantly outperforming Smina, 
Table 5. 

3.5. Family-specific models trained with Kernie showed further 
improvement in MUV 

The prior family-specific experiments showed that concentrating the 
training dataset on a particular protein family improved the generaliz
ability of the model, therefore, we further evaluated the performance of 
Deffini when training with Kernie dataset and testing on various data
sets. The Kernie-trained Deffini outperformed other models with respect 
to all metrics on the MUV dataset, with an average AUC ROC of 0.600, 
AUC PRC of 0.008, EF1% at 3.828, EF5% at 2.614, and EF10% at 2.000, 
Table 6. However, the Deffini results were significantly lower than that 
of the 3-fold cross-validation results on the Kernie dataset. This is 
attributed to the fact that all Kernie targets are from the kinase protein 
family, while the MUV dataset has non-kinase proteins. 

Thus in the next step, we evaluated the independent performance of 
the Kernie-trained model by testing Deffini on the MUV kinase subset, 
and the results showed that the performance of the kinase-specific model 
is substantially better, with an average AUC ROC of 0.745, AUC PRC of 
0.018, EF1% at 7.465, EF5% at 5.163, and EF10% at 3.750, which 
outperformed other models, Table 7. The improved performance shows 
how family-specific models significantly improve the power of drug 
virtual screening models. 

To evaluate the generalizability of the family-specific model more 
objectively, we trained Deffini with Kernie or Kernie-minus-MUV (a 
Kernie dataset excluding kinases that are also present in MUV) and 
tested its performance on the MUV kinase and protease subset, Table 8, 
Fig. 4. The results indicate that testing on proteins from a different 
family completely destroyed the model performance. But the exclusion 
of MUV kinase targets in Kernie only slightly decreased its performance, 
which further validated the family-specific approach. 

4. Discussion 

Structure-based virtual screening is an important tool for compound 
prioritization, but traditional force field-based or physics-based scoring 
functions or empirical scoring function do not work well for such 

Table 5 
Results of Deffini and other models in 3-fold cross-validation on the Kernie 
dataset.  

Metric AUC_ROC AUC_PRC EF1% EF5% EF10% 

Deffini 0.985 ±
0.046 

0.857 ±
0.206 

44.841 ±
11.178 

17.228 ±
3.290 

9.103 ±
1.371 

CNN 0.980 ±
0.055 

0.808 ±
0.229 

43.864 ±
13.218 

17.170 ±
3.316 

9.103 ±
1.242 

GanDTI 0.977 ±
0.060 

0.768 ±
0.250 

40.921 ±
16.307 

16.941 ±
3.675 

9.036 ±
1.507 

Transformer 0.973 ±
0.066 

0.748 ±
0.255 

40.726 ±
15.340 

16.402 ±
3.912 

8.942 ±
1.430 

Smina 0.664 ±
0.192 

0.136 ±
0.216 

5.879 ±
11.966 

3.379 ±
4.725 

2.538 ±
2.646  

Table 6 
Testing results on the entire MUV dataset of different models trained with 
Kernie.  

Method AUC_ROC AUC_PRC EF1% EF5% EF10% 

Deffini 0.600 ±
0.132 

0.008 ±
0.011 

3.828 ±
4.250 

2.614 ±
2.251 

2.000 ±
1.764 

Transformer 0.585 ±
0.104 

0.006 ±
0.008 

3.061 ±
4.779 

2.460 ±
2.655 

1.820 ±
1.561 

CNN 0.548 ±
0.074 

0.004 ±
0.002 

1.020 ±
1.592 

1.281 ±
0.960 

1.154 ±
0.618 

GanDTI 0.541 ±
0.091 

0.004 ±
0.003 

2.551 ±
3.621 

1.794 ±
1.618 

1.538 ±
0.918 

Smina 0.529 ±
0.082 

0.003 ±
0.001 

1.787 ±
1.722 

1.127 ±
1.067 

1.410 ±
0.894  

Table 7 
Testing results on the MUV kinase subset of different models trained with Kernie.  

Training set AUC_ROC AUC_PRC EF1% EF5% EF10% 

Deffini 0.745 ±
0.112 

0.018 ±
0.017 

7.465 ±
5.666 

5.163 ±
2.201 

3.750 ±
2.007 

Transformer 0.648 ±
0.148 

0.012 ±
0.014 

5.803 ±
7.836 

4.497 ±
4.260 

2.999 ±
2.356 

CNN 0.611 ±
0.096 

0.003 ±
0.001 

0.829 ±
1.658 

1.832 ±
1.477 

1.584 ±
0.569 

GanDTI 0.607 ±
0.043 

0.004 ±
0.001 

0.000 ±
0.000 

2.166 ±
0.999 

2.166 ±
0.577 

Smina 0.505 ±
0.121 

0.003 ±
0.002 

1.659 ±
1.915 

0.999 ±
1.586 

1.250 ±
1.198  

Table 8 
Testing results on the MUV kinase and protease subsets of Deffini trained with 
different Kernie subsets.  

Training set AUC_ROC AUC_PRC EF1% EF5% EF10% 

Testing on MUV kinase subset 
Kernie 0.745 ±

0.112 
0.018 ±
0.017 

7.465 ±
5.666 

5.163 ±
2.201 

3.750 ±
2.007 

Kernie- 
minus- 
MUV 

0.736 ±
0.141 

0.016 ±
0.012 

6.636 ±
4.692 

5.163 ±
3.095 

3.833 ±
1.934 

Testing on MUV protease subset 
Kernie 0.483 ±

0.026 
0.002 ±
0.000 

0.000 ±
0.000 

0.222 ±
0.385 

0.111 ±
0.192 

Kernie- 
minus- 
MUV 

0.522 ±
0.032 

0.002 ±
0.000 

0.000 ±
0.000 

0.444 ±
0.385 

0.778 ±
0.385  
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problems. Deep learning-based methods provide another promising 
approach for prioritizing compounds during virtual screening. In this 
work, we present Deffini, a deep convolutional neural network for 
scoring protein-ligand interactions, which is trained to classify com
pounds as binders or nonbinders using 3D structural information of a 
protein-ligand complex, so as to provide medicinal chemists with 
candidate molecules with strong binding potential to target proteins. 

The better performance of the Deffini model is attributed to the 
refined deep-learning neural network architecture and highly dependent 
on the quality of training and testing dataset. Deffini extracts the 
structural features of the 3D ligand-protein binding pocket with the CNN 
model, and then sort the relevant features through max pooling. Used in 
combination, the max pooling and dropout layers in Deffini effectively 
prevent the model from overfitting, which results in the improved its 
generalizability. 

Pan-family models (trained from mix-protein-family data such as 
DUD-E) performed well in cross-validation but performance deterio
rated in independent validation datasets, implying a poor generaliz
ability. In contrast, the family-specific training and testing strategy 
enabled Deffini to gain consistent results. Because ligand-target binding 
mode varies significantly from one protein family to another, factors 
that are important to binding in one protein family are likely inappli
cable to another family, which is why family-specific models consis
tently outperform pan-family models. 

As expected, increasing the size of the protein family dataset (kinases 
in our case) further improved the performance for deep-learning models. 
A large training dataset could help to correct the inherent bias (intra- 
target and inter-target) in small datasets [40]. Deffini showed signifi
cantly better performance when being trained on the Kernie dataset and 
tested on the MUV dataset especially on the MUV kinase subset, indi
cating its better learning capacity compared to other deep-learning 
models. Being a much larger dataset, Kernie helps Deffini to better 
calibrate the weights of different factors that contribute to the 
ligand-target binding. Despite the improved performance, the AUC ROC 
did not increase beyond 0.75. The main reason could be attributed to the 
inherent differences between computer-generated decoys in Kernie and 
the experimentally validated decoys in MUV, which could confound 
deep-learning models with a high learning capacity and lead to the 
limited generalizability. Additionally, the noises from inaccurate input 
docking poses (the top-ranked pose is not always the accurate one) 
would also reduce to the generalizability of a model. In the next-phase of 
our research, more experimentally-validated actives and decoys and 

higher learning capacity neural network modules such as 3D CNN model 
will be used to improve upon the current work. However, we believe 
that family-specific models will be widely used to better predict the 
ligand-protein binding potential in virtual screening. 

5. Conclusion 

We provided a novel solution to the problem of generalizing deep 
learning-based scoring functions in virtual screening. Utilizing different 
family-specific datasets to train models shows that family-specific 
models outperform the pan-family model. It suggests that a training 
set composed of a mixture of various protein family bioactivity data 
seems to interfere with the prediction performance of the model. Our 
family-specific model showed outstanding results on MUV, a difficult 
virtual screening benchmark dataset when being trained with Kernie, a 
self-collected larger kinase-specific dataset, which shows that a high- 
quality family specific bioactivity dataset is helpful to establish a 
powerful virtual screening model. 
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